Q1. B	utano	ne is reduced in a two-step reaction using NaBH₄ followed by dilute hydrochl	oric acid.
	(a)	Write an overall equation for the reduction of butanone using [H] to represe reductant.	nt the
			(1
	(b)	By considering the mechanism of the reaction, explain why the product has effect on plane polarised light.	no
			(6 Total 7 marks)
Q2. Tł	ne ca	rbonyl compound CH₃CH₂CHO reacts very slowly with HCN	
	(a)	Name and outline a mechanism for the reaction of CH ₃ CH ₂ CHO with HCN	
		Name of mechanism	
		Mechanism	

(2)

(b)	The	reaction in part (a) produces a pair of enantiomers.				
	(i)	Draw the structure of each enantiomer to show how they are related to each other.				
			(2)			
	(ii)	State and explain how you could distinguish between the two enantiomers.				
			(2)			
(c)	Give 	the IUPAC name of the product of the reaction in part (a).	(1)			
(d)	_	In practice, KCN rather than HCN is added to the carbonyl compound.				
		en that K_s for HCN = 4.0 × 10 ⁻¹⁰ mol dm ⁻³ , suggest why the reaction with HCN is slow.				

	acrylonitrile with other compounds.	(e)
	Acrylonitrile is the common name for the following compound.	
	$H_2C = CH - C \equiv N$	
	(i) Acrylonitrile can be formed from propene.	
	Write an equation for the reaction of propene with ammonia and oxygen to form acrylonitrile and one other product.	
(1)		
	(ii) The term copolymer is used to describe the product obtained when two or more different monomers form a polymer.	
itrile	Draw the repeating unit of the acrylic copolymer that contains 75% acrylonitr monomer and 25% chloroethene monomer.	
(1)		
	(iii) Name the type of polymerisation involved in part (ii)	
(1) 15 marks)	(Total 1	
est	st one reason why Tollens' reagent is used as the oxidising agent in the specific tesdehydes rather than the less expensive acidified potassium dichromate(VI).	
tal 1 mark)	(Tota	

Q4. This question is about some isomers of C₅H₈O₂

(a) Compound **H** is a cyclic ester that can be prepared as shown.

On the structure of ${\bf H}$, two of the carbon atoms are labelled.

Н

(i) Name and outline a mechanism for this reaction.

Use Table C on the Data Sheet to give the 13 C n.m.r. δ value for the carbon atom labelled a and the δ value for the carbon atom labelled b .

			(7)
	(ii)	HOCH ₂ CH ₂ CH ₂ COCl can also react to form a polyester in a mechanism similar to that in part (i).	
		Draw the repeating unit of the polyester and name the type of polymerisation involved.	
			(2)
(b)	Stat reac	be how you could distinguish between compounds ${\bf J}$ and ${\bf K}$ by a simple test-tube tion.	
		e how you could distinguish between ${f J}$ and ${f K}$ by giving the number of peaks in H n.m.r. spectrum of each compound.	
	CH	$H_3-C-CH_2-C-CH_3$ $CH_3-C-CH_2-CH_2-C \stackrel{\bigcirc}{\sim}_H^O$	
		J K	
			(5)

	(c)	Draw the structure of each of the following isomers of C ₅ H ₈ O ₂ Label each structure you draw with the correct letter L , M , N , P or Q .
		L is methyl 2-methylpropenoate.
		M is an ester that shows E-Z stereoisomerism.
		N is a carboxylic acid with a branched carbon chain and does not show stereoisomerism.
		P is an optically active carboxylic acid.
		Q is a cyclic compound that contains a ketone group and has only two peaks in its ¹ H n.m.r. spectrum.
		(5)
		(Total 19 marks)
Q5.	Ethano proc	ol can be oxidised by acidified potassium dichromate(VI) to ethanoic acid in a two-step ess.
	(a)	ethanol ──> ethanal ──> ethanoic acid
		ethanol —> ethanal —> ethanoic acid In order to ensure that the oxidation to ethanoic acid is complete, the reaction is carried out under reflux.
		In order to ensure that the oxidation to ethanoic acid is complete, the reaction is
		In order to ensure that the oxidation to ethanoic acid is complete, the reaction is carried out under reflux. Describe what happens when a reaction mixture is refluxed and why it is necessary,
		In order to ensure that the oxidation to ethanoic acid is complete, the reaction is carried out under reflux. Describe what happens when a reaction mixture is refluxed and why it is necessary,
		In order to ensure that the oxidation to ethanoic acid is complete, the reaction is carried out under reflux. Describe what happens when a reaction mixture is refluxed and why it is necessary,
		In order to ensure that the oxidation to ethanoic acid is complete, the reaction is carried out under reflux. Describe what happens when a reaction mixture is refluxed and why it is necessary,
		In order to ensure that the oxidation to ethanoic acid is complete, the reaction is carried out under reflux. Describe what happens when a reaction mixture is refluxed and why it is necessary,
		In order to ensure that the oxidation to ethanoic acid is complete, the reaction is carried out under reflux. Describe what happens when a reaction mixture is refluxed and why it is necessary,
		In order to ensure that the oxidation to ethanoic acid is complete, the reaction is carried out under reflux. Describe what happens when a reaction mixture is refluxed and why it is necessary,

The boiling points of tollowing table.	the organic com	pounds in a rea	ction mixture are	shown in th
Compound	ethanol	ethanal	ethanoic acid	
Boiling point / °C	78	21	118	
nixture of these three apparatus you would lescription of the app	compounds. In use and how you	clude in your ar u would minimis	se the loss of etha	on of the anal. Your
nixture of these three apparatus you would lescription of the app	compounds. In use and how you	clude in your ar u would minimis	nswer a descriptionse the loss of etha	on of the anal. Your
nixture of these three apparatus you would lescription of the app	compounds. In use and how you	clude in your ar u would minimis	nswer a descriptionse the loss of etha	on of the anal. Your
nixture of these three pparatus you would lescription of the app	compounds. In use and how you	clude in your ar u would minimis	nswer a descriptionse the loss of etha	on of the anal. Your
nixture of these three apparatus you would lescription of the app	compounds. In use and how you	clude in your ar u would minimis	nswer a descriptionse the loss of etha	on of the anal. Your
nixture of these three apparatus you would lescription of the app	compounds. In use and how you	clude in your ar u would minimis	nswer a descriptionse the loss of etha	on of the anal. Your
nixture of these three apparatus you would lescription of the appaketch.	compounds. In use and how you	clude in your ar u would minimis	nswer a descriptionse the loss of etha	on of the anal. Your

			. (2)
(e)	A student obtained a sa	mple of a liquid using the apparatus in part (c) .	
		nt could use chemical tests to confirm that the liquid id not contain ethanoic acid.	d
			•
			(5) (Total 16 marks)
Q6.Which	alcohol could not be prod	duced by the reduction of an aldehyde or a ketone?	
Α	2-methylbutan-1-ol	0	
В	2-methylbutan-2-ol	0	
С	3-methylbutan-1-ol	0	
D	3-methylbutan-2-ol	0	(Total 1 mark)