| Q1. B | utano | ne is reduced in a two-step reaction using NaBH₄ followed by dilute hydrochl | oric acid. | |---------------|-------|--|----------------------| | | (a) | Write an overall equation for the reduction of butanone using [H] to represe reductant. | nt the | | | | | (1 | | | (b) | By considering the mechanism of the reaction, explain why the product has effect on plane polarised light. | no | (6
Total 7 marks) | | | | | | | Q2. Tł | ne ca | rbonyl compound CH₃CH₂CHO reacts very slowly with HCN | | | | (a) | Name and outline a mechanism for the reaction of CH ₃ CH ₂ CHO with HCN | | | | | Name of mechanism | | | | | Mechanism | | | | | | | (2) | (b) | The | reaction in part (a) produces a pair of enantiomers. | | | | | |-----|----------|---|-----|--|--|--| | | (i) | Draw the structure of each enantiomer to show how they are related to each other. | | | | | | | | | (2) | | | | | | (ii) | State and explain how you could distinguish between the two enantiomers. | | | | | | | | | (2) | | | | | (c) | Give
 | the IUPAC name of the product of the reaction in part (a). | (1) | | | | | (d) | _ | In practice, KCN rather than HCN is added to the carbonyl compound. | | | | | | | | en that K_s for HCN = 4.0 × 10 ⁻¹⁰ mol dm ⁻³ , suggest why the reaction with HCN is slow. | | | | | | | acrylonitrile with other compounds. | (e) | |------------------|--|-----| | | Acrylonitrile is the common name for the following compound. | | | | $H_2C = CH - C \equiv N$ | | | | (i) Acrylonitrile can be formed from propene. | | | | Write an equation for the reaction of propene with ammonia and oxygen to form acrylonitrile and one other product. | | | (1) | | | | | (ii) The term copolymer is used to describe the product obtained when two or more different monomers form a polymer. | | | itrile | Draw the repeating unit of the acrylic copolymer that contains 75% acrylonitr monomer and 25% chloroethene monomer. | | | | | | | | | | | (1) | | | | | (iii) Name the type of polymerisation involved in part (ii) | | | (1)
15 marks) | (Total 1 | | | | | | | est | st one reason why Tollens' reagent is used as the oxidising agent in the specific tesdehydes rather than the less expensive acidified potassium dichromate(VI). | | | | | | | tal 1 mark) | (Tota | | Q4. This question is about some isomers of C₅H₈O₂ (a) Compound **H** is a cyclic ester that can be prepared as shown. On the structure of ${\bf H}$, two of the carbon atoms are labelled. Н (i) Name and outline a mechanism for this reaction. | Use Table C on the Data Sheet to give the 13 C n.m.r. δ value for the carbon atom labelled a and the δ value for the carbon atom labelled b . | |---| (7) | |-----|--------------|---|-----| | | (ii) | HOCH ₂ CH ₂ CH ₂ COCl can also react to form a polyester in a mechanism similar to that in part (i). | | | | | Draw the repeating unit of the polyester and name the type of polymerisation involved. | (2) | | | | | | | (b) | Stat
reac | be how you could distinguish between compounds ${\bf J}$ and ${\bf K}$ by a simple test-tube tion. | | | | | e how you could distinguish between ${f J}$ and ${f K}$ by giving the number of peaks in H n.m.r. spectrum of each compound. | | | | CH | $H_3-C-CH_2-C-CH_3$ $CH_3-C-CH_2-CH_2-C \stackrel{\bigcirc}{\sim}_H^O$ | | | | | J K | (5) | | | (c) | Draw the structure of each of the following isomers of C ₅ H ₈ O ₂
Label each structure you draw with the correct letter L , M , N , P or Q . | |-----|----------------|--| | | | L is methyl 2-methylpropenoate. | | | | M is an ester that shows E-Z stereoisomerism. | | | | N is a carboxylic acid with a branched carbon chain and does not show stereoisomerism. | | | | P is an optically active carboxylic acid. | | | | Q is a cyclic compound that contains a ketone group and has only two peaks in its ¹ H n.m.r. spectrum. | | | | | | | | | | | | | | | | (5) | | | | (Total 19 marks) | | | | | | | | | | Q5. | Ethano
proc | ol can be oxidised by acidified potassium dichromate(VI) to ethanoic acid in a two-step ess. | | | | | | | (a) | ethanol ──> ethanal ──> ethanoic acid | | | | ethanol —> ethanal —> ethanoic acid In order to ensure that the oxidation to ethanoic acid is complete, the reaction is carried out under reflux. | | | | In order to ensure that the oxidation to ethanoic acid is complete, the reaction is | | | | In order to ensure that the oxidation to ethanoic acid is complete, the reaction is carried out under reflux. Describe what happens when a reaction mixture is refluxed and why it is necessary, | | | | In order to ensure that the oxidation to ethanoic acid is complete, the reaction is carried out under reflux. Describe what happens when a reaction mixture is refluxed and why it is necessary, | | | | In order to ensure that the oxidation to ethanoic acid is complete, the reaction is carried out under reflux. Describe what happens when a reaction mixture is refluxed and why it is necessary, | | | | In order to ensure that the oxidation to ethanoic acid is complete, the reaction is carried out under reflux. Describe what happens when a reaction mixture is refluxed and why it is necessary, | | | | In order to ensure that the oxidation to ethanoic acid is complete, the reaction is carried out under reflux. Describe what happens when a reaction mixture is refluxed and why it is necessary, | | | | In order to ensure that the oxidation to ethanoic acid is complete, the reaction is carried out under reflux. Describe what happens when a reaction mixture is refluxed and why it is necessary, | | | | In order to ensure that the oxidation to ethanoic acid is complete, the reaction is carried out under reflux. Describe what happens when a reaction mixture is refluxed and why it is necessary, | | The boiling points of tollowing table. | the organic com | pounds in a rea | ction mixture are | shown in th | |--|-------------------------------|-------------------------------------|--|-------------------------| | Compound | ethanol | ethanal | ethanoic acid | | | Boiling point / °C | 78 | 21 | 118 | | | nixture of these three
apparatus you would
lescription of the app | compounds. In use and how you | clude in your ar
u would minimis | se the loss of etha | on of the
anal. Your | | nixture of these three
apparatus you would
lescription of the app | compounds. In use and how you | clude in your ar
u would minimis | nswer a descriptionse the loss of etha | on of the
anal. Your | | nixture of these three
apparatus you would
lescription of the app | compounds. In use and how you | clude in your ar
u would minimis | nswer a descriptionse the loss of etha | on of the
anal. Your | | nixture of these three
pparatus you would
lescription of the app | compounds. In use and how you | clude in your ar
u would minimis | nswer a descriptionse the loss of etha | on of the
anal. Your | | nixture of these three
apparatus you would
lescription of the app | compounds. In use and how you | clude in your ar
u would minimis | nswer a descriptionse the loss of etha | on of the
anal. Your | | nixture of these three
apparatus you would
lescription of the app | compounds. In use and how you | clude in your ar
u would minimis | nswer a descriptionse the loss of etha | on of the
anal. Your | | nixture of these three apparatus you would lescription of the appaketch. | compounds. In use and how you | clude in your ar
u would minimis | nswer a descriptionse the loss of etha | on of the
anal. Your | | | | | . (2) | |----------|----------------------------------|---|-------------------------| | | | | | | (e) | A student obtained a sa | mple of a liquid using the apparatus in part (c) . | | | | | nt could use chemical tests to confirm that the liquid id not contain ethanoic acid. | d | • | | | | | | | | | | (5)
(Total 16 marks) | | | | | | | | | | | | Q6.Which | alcohol could not be prod | duced by the reduction of an aldehyde or a ketone? | | | Α | 2-methylbutan-1-ol | 0 | | | В | 2-methylbutan-2-ol | 0 | | | С | 3-methylbutan-1-ol | 0 | | | D | 3-methylbutan-2-ol | 0 | (Total 1 mark) |